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Density functional theory has been applied to describe electronic substituent effects, especially in the pursuit
of linear relationships similar to those observed from physical organic chemistry experiments. In particular,
analogues for the Hammett equation parameters (σ, F) have been developed. Theoretical calculations were
performed on several series of organic molecules in order to validate our model and for comparison with
experimental results. The trends obtained by Hammett-like relations predicted by the model were found to be
in qualitative agreement with the experimental data. The results obtained in this study suggest the applicability
of similar correlation analysis based on theoretical methodologies that do not make use of empirical fits to
experimental data can be useful in the study of substituent effects in organic chemistry.

I. Introduction

For many years, studies in organic physical chemistry have
shown that the reactivities of organic compounds usually show
linear relationships that involve logarithms of rate (k) or
equilibrium (K) constants. An elementary example of such a
linear relation comes from the plot of the pKa of ring-substituted
phenylacetic acids versus the pKa for the corresponding
substituted benzoic acids. Such relationships are usually known
as linear free-energy relationships (LFER). In the literature, there
is extensive material pertaining to this subject.1-7,13-19 Hansch,
Leo, and Taft have written a recent review.5

In an abbreviated form, the substituent effects are expressed
by

In eq 1, we use the notation of Leffler and Grunwald.3 ∆µ1 and
∆µ0 are the changes in chemical potential for two arbitrary
organic substrates 1 and 0, respectively.δS denotes the change
in the chemical potential caused by the substituent S. In addition,
the parametera10 is a measure of the sensitivity of the substrate
to the molecular change defined byδS.

Despite the fact that the first LFER was reported by Brønsted
and Pedersen6 in 1924, it was not until the seminal paper by
Hammett1 in 1937 showing the regularities in the changes of
reactivities with changes in structures of organic compounds
for meta- and para-substituted benzene derivatives that intense
work leading to the search for similar correlations and further
improvements took place. So much progress has been made that
a detailed account of the current breakthroughs in the area would
require a series of reviews that are beyond the scope of this
work. However, two major advances in the development of
LFER are worth mentioning. First, the separation of polar, steric,
and resonance effects by Taft,13-15 which led to an equation
applicable to aliphatic systems and ortho-substituted aromatic
systems, and second, the development of relationships account-

ing for the solvent effects.16,17 More recently, the extension of
the correlation analysis for substituent effects to study biological
processes via substituent parameters has motivated a renewed
interest in this area. The parameters representing the electronic,
steric, hydrophilic, hydrophobic, and hydrogen-bonding interac-
tions have been combined to derive quantitative structure-
activity relationships (QSAR) for a host of interactions of
organic compounds with living systems or parts thereof and
for applications in drug design.18

The linear plots, represented by the Hammett equation, can
be expressed in the form

whereKS and K0 are rate constants or equilibrium constants
for the S-substituted and hydrogen-substituted molecules,
respectively,σ is the substituent constant, andF is a constant
depending on the reaction involved. The Hammett equation is
one of the most simple and popular linear free-energy relation-
ships currently available, but its interpretation in quantum
mechanical terms is by far a challenging task. Jaffe´’s work6

was the first successful attempt to explain substituent effects
from quantum mechanical principles. However, the traditional
methods of quantum chemistry based on wave functions are
cumbersome for expressing these ideas. Instead, we propose
that density functional theory (DFT) can provide a simple and
natural framework.

Density functional theory has been highly successful in the
proper description of the electronic structure of atoms, mol-
ecules, and solids and especially useful in clarifying the nature
of chemical processes. In chemistry, DFT has been used to
interpret traditional empirical indexes, such as electronegativity
and hardness.8 In section II of this paper, the theoretical bases
of our procedure are discussed. In section III, we compare some
theoretical results with corresponding experimental data in order
to analyze the model’s effectiveness in predicting trends. Despite
the empirical character of the inferences resulting from this
comparison, we attempt some theoretical explanations based on
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DFT interpretations. Finally, we summarize the results and main
perspectives in section IV.

II. Theoretical Considerations

In DFT, the ground-state electronic energy is a functional of
the density,9 given by the formula

Here,ν is the external one-particle potential andF[n] is the
sum

whereT[n] is the kinetic energy functional,Vee is the energy of
electron-electron repulsion, andn is the electron density.

The second Hohenberg-Kohn Theorem9 ensures the varia-
tional character of eq 3 and using the calculus of variations
leads to

µ is the electronic chemical potential and is a Lagrange
parameter ensuring the constraint∫ n(r ) dr ) N, whereN is
the number of electrons.

DFT will be used to look for linear relationships among the
substituent effects on different substrates from the theoretical
point of view. It is not intended to be a “demonstration” or
“validation” of the empirical relationships obtained in physical
organic chemistry, but a new look at this problem. However, it
is possible to link the parameters derived from this approach to
the experimental ones. In fact, this paper is an attempt to
generalize our results from earlier studies.10

To describe the substituent effects on organic substrates, we
consider the density,n, of the whole system (substrate plus
substituent)

wherenS is the density of the substrate plus the density of the
substituent, except for a small partn′ that represents the
redistribution of the electron density between the substrate and
the substituent in the substituted molecule. The densities are
constructed such thatn′ integrates toN′, the number of electrons
being transferred between the substituent and substrate. The
number of electrons of the whole system isN.

If it is assumed thatnS . n′ such that eqs 3-5 are
approximately valid tonS and form the Taylor series expansion
of F[nS + n′] up to second order around the densitynS

From eq 5,

and

where1 and2 stand for the distance vectorsr1 andr2; µS, νS,
andηS(1, 2) are, respectively, the electronic chemical potential,
the external potential, and the hardness kernel of the molecule.
Combining eqs 7, 8, and 9 into eq 3, usingV(r ) ) VS(r ) + V′(r )
and the electrostatic approximation for the hardness kernel,20

ηS(1, 2) = 1/|1 - 2|, we obtain for the energy of the whole
system (substituent+ substrate)

Here, the potentialν′ coming from the electrons transferred
from the substituent to the substrate (or vice-versa) is

The combination of eqs 10-11 gives the change of energy
as a consequence of the electronic redistribution for attaching
a given substituent to the substrate

Equation 12 is the energy change associated with the electron
density rearrangement due to the presence of the substituent
relative to an ideal state, which has electron density equal to
the sum of densities of the substrate and the substituent. We
may derive a similar equation using other methods such as an
energy perturbation method within the framework of DFT
similar to that used by Li and Evans11 discussing the relationship
between frontier molecular orbital (FMO) and hard and soft
acids and bases (HSAB) principles.

Equation 12 can be used to obtain an analogue of the
parameterσ for the Hammett equation. Equation 12 is a
functional ofN’ and ν′, ∆E ) ∆E[N′, V′], and it can be written
for two arbitrary substrates such as 1 and 2 in the form∆E1 )
∆E1[N′1, V′1] and ∆E2 ) ∆E2[N′2, V′2]. Now, it is known that
two functionsu(x, y, z) and V(x, y, z) are related for some
function f(u, V) ) 0 if the vector product of their gradients is
null 21

When the constraint given by eq 13 is applied to these
functionals, the necessary condition for obtaining analogues of
linear relationships for the substituent effects in the context of
DFT is established. Equation 13 is reduced to the Jacobian
condition of eq 14 in the case of functions of two variables.
Strictly speaking, derivatives involved in eq 14 are functional
derivatives.

Then

When the condition of eq 15 is fulfilled by different molecular
substrates with the same substituents, the substituent effects are

E[n] ) F[n] + ∫V(r )n(r ) dr (3)

F[n] ) T[n] + Vee[n] (4)

µ )
δF[n]

δn
+ V(r ) (5)

n ) nS + n′ (6)

F[nS + n′] ) F[nS] + ∫ δF
δnS

n′ dr + ∫∫ δ2F
δnS(1) δnS(2)

n′

(1)n′(2) d1 d2 (7)

δF
δnS

) µS - νS (8)

δ2F
δnS(1) δnS(2)

) ηS(1, 2) (9)

E[nS + n′] ) E[nS] + µSN′ + ∫ drV′(r )nS(r ) + ∫ drV′(r )n′

(r ) + ∫∫ d1 d2
n′(1)n′(2)
|1 - 2| (10)

ν′(r ) ) -∫ d2
n′(2)

|1 - 2| (11)

∆E ) E[nS + n′] - E[nS] ) µSN′ + ∫ drnS(r )V′(r )
(12)

∇u × ∇V ) 0 (13)

| ∂∆E1

∂N′
∂∆E1

∂V′(r )
∂∆E2

∂N′
∂∆E2

∂V′(r )
| ) 0 (14)

µ1

N1 - N′1
)

µ2

N2 - N′2
) constant (15)
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transferred from series to series in the form of some defined
functional correlation. This correlation is not necessarily linear.

We defineσ′ values for the substituent S within any organic
series as

where the value of∆E for the S-substituted molecule has been
subtracted from the value for the hydrogen-substituted molecule.
Theseσ′ values are correlated by some relationship if the
condition of eq 15 is satisfied. When the condition of eq 15 is
satisfied, a relationship correlating theseσ′ values exists, whether
this relationship is linear or nonlinear is not determined by this
condition.

The formalism above avoids the usual rationalizations, based
on the law of mass action, that presume the substituent effects
are transferred linearly from one reactant to one product and
the rest of the reaction species contribute in a constant amount
to the total free-energy change. This linear transfer cannot be
proven from phenomenological points of view, such as classical
thermodynamics. The present formalism also allows us to
characterize substituent effects on an isolated substrate without
the consideration of a complete chemical reaction system.

Several strategies can be proposed to calculate the energy
change given by eq 12 in the exact form. It is only necessary to
know the functionn′(rb) with sufficient accuracy. For example,
because Bader’s theory12 offers a method for rigorously
partitioning any quantum system into well-defined subsystems,
it can be thought that the zero-flux surface separating substituent
and substrate offers a boundary to construct the functionn′(rb).
For the sake of simplicity, we will use a simpler approximation,
and the substrate and substituent densities will be taken as point
charges that reside on theA nuclei of the substituent and theB
nuclei of the substrate. The densityn′ will be considered to be
generated by net charges,Ni′, which reside on the substituent
nuclei at distancesri. Likewise, the densitynS are generated by
the net charges,Nj, on the substrate nuclei at the distancesrj.
Then

with

and

This charge discretization can be obtained from a population
analysis, such as specified by the Mulliken or Bader analysis.

By substituting eq 17a,b into eq 12 and solving the integral,
which is trivial because of the delta functions under the integral
symbol, we obtain

The second term of eq 18 is the simplest approximation of
the field effect represented by the term under the integral in eq
12. Other approximated equations can be derived by using a

different order for the expansion of the respective densities. For
example, if the electron density of the substituent is taken as a
multipolar expansion and truncated in the second term, then a
term resembling a dipole-dependent field effect similar to that
of Kirkwood and Westheimer is obtained.19 Of course, these
approaches are not necessary if the integral is solved using the
exact densities from ab initio calculations.

Beyond the approximations used above that could leave out
some important contributions, it is enough to show substituent
effects as consequences of the redistribution of electron density
between substituent and substrate. Equation 12 and its ap-
proximation (eq 18) quantitatively reflect two more important
effects coming from the substituent being qualitatively or
semiempirically described in the literature. The first term, on
the rhs, represents the contribution to the energy change coming
from the income (withdrawal) of electrons in the substrate, and
the second term represents the contribution coming from the
field effect of the substituent on the substrate.

III. Theoretical Calculations and Discussions

Below, we show some calculations to support our theoretical
hypothesis. We do not claim that these calculations are either
representative of the wide variety of experimental behaviors or
sufficiently systematic that our parameters can be used instead
of experimental ones. On the other hand, these comparisons
with experimental results should be considered only as a
qualitative support for the present procedure. The present
correlations, as those from experiment, represent functional
relationships of the substituent effects; however, these are
different by origin and purpose. What we have tried to validate
here is the possibility of expressing the substituent effects by
parametric correlations based on DFT theory. In future studies,
we will establish parameters that characterize free-energy
relationships, solvent effects, and others with theoretical calcula-
tions. It is far-reaching to pretend to provide a theoretical basis
to the already known experimental relationships, although along
this way can be discussed some aspect of them.

Tables 1-5 show the values of HOMO and LUMO energies
and electronic chemical potentials in the approximationεHOMO

+ εLUMO/2, Mulliken net charges on the substituents, and the
values of the field effect (from the second term in the right-
hand side of eq 18) for several ring-substituted organic series.
These data were obtained from ab initio calculations. The
geometry of the derivatives from benzoic acids, phenols,
phenylacetic acids, phenylpropenoic acids (trans), and phenyl-
propanoic acids were optimized at ab initio level using DFT
(B3PW91/6-31g*). The absence of imaginary frequencies for
each geometry verified that these structures reside at energy
minima. Reported data were obtained from single-point calcula-
tions at the level B3PW91/6-311++g** using the optimized
geometries in all of the molecules.

Using data from Tables 1-5, we calculated the ratios given
by eq 15 for each series and tabulated them in Table 6. It is
evident that these ratios are practically constants for each
substituted molecule with the same substituent on the different
substrates. According to the condition of eq 15, a linear
relationship exists between theσ′ values of any two substrates
with the same substituent.

Theoreticalσ′ values calculated using eqs 16 and 18 and
experimentalσ values are shown in Table 7. We omitσ′ units,
but the actual units correspond to energy units. The electronic
chemical potential is the negative value of the electronegativity.8

In analogy with thermodynamics, we interpret the electronic
chemical potential as the motive force for determining the

σS′) ∆EH - ∆ES (16)

n′(r ) ) ∑
i)1

A

Ni′ δ(r - ri) (17a)

N′ ) ∑
i)1

A

Ni′

nS(r ) ) ∑
j)1

B

Nj δ(r - r j) (17b)

∆E ) µSN′ + ∑
i)1

A

∑
j)1

B Ni′Nj

|ri - rj|
(18)
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electron flow in a particular direction. Thus, the first term on
the right-hand side of eq 18 incorporates the energy change
coming from inductive and resonance effects in theσ′ values
given by eq 16. The second term (rhs) of eq 18 accounts for
the energy change produced by the external field effect of the
substituent. Our definition ofσ′ ensures better correspondence
between computedσ values and experimentalσ′ values, as much
in magnitudes as in signs, predicting correctly the relative
magnitude of the electron-donor or electron-acceptor character
of the substituents. This is surprising, because the computedσ′
values do not include the solvent effects, temperature, and the
statistical mechanical averaging present in the measuredσ
values. The substituent effects are overestimated for halogen
substituents, and in the case of chlorine, the sign is wrong. This
is probably due to the use of the point-charge approximation
and Mulliken population analysis, and is not a limitation of the
method.

The correlation analysis shows excellent linear relationships
(r2 > 0.96 with confidence interval of 99%) for the plot ofσ′
values for a series of substrates versusσ′ values of benzoic acids,
the reference substrate. An example of such a relationship is
shown in Figure 1, in whichσ′ values for the ring-substituted
phenylpropenoic acids are plotted againstσ′ values for the
corresponding substituted benzoic acids. This type of plot will
be referred to as aσ′ plot and its slope as theF′ parameter. In
this case, slopes of the ‘best straight lines’ ofσ′ plots are similar
to the corresponding HammettF-values, indicating the sensitivity
of the substrate to substituents.

Table 8 shows computedF′ values and experimentalF values
for the studied substrates. These data support the proposal that
our theoretical parameters account for contributions relevant to
the experimental parameters. In fact, in Table 8, we observe
that all calculatedF-values are positive corresponding to a
reaction that is facilitated by reducing the electron density at

TABLE 1: HOMO and LUMO Energies, Net Charges on
the Substituents, Electronic Chemical Potentials, and Field
Effect for Benzoic Acids

substituent EHOMO (eV) ELUMO (eV) charge (e) µ (eV) field (eV)

p-NO2 -8.369 -3.420 -0.100 5.894 0.074
p-NH2 -6.204 -1.393 0.228 3.798 -0.032
p-CH3 -7.293 -1.849 -0.116 4.571 0.080
p-F -7.896 -2.306 -0.193 5.101 0.105
p-Cl -7.441 -2.198 0.569 4.819 -0.138
p-Br -7.375 -2.247 -0.231 4.811 0.110
H -7.470 -1.767 0.130 4.618 0.000
m-NO2 -8.313 -3.122 -0.096 5.717 0.084
m-NH2 -6.020 -1.751 0.200 3.885 -0.026
m-CH3 -7.201 -1.919 -0.077 4.560 0.077
m-F -7.528 -2.251 -0.140 4.889 0.103
m-Cl -7.346 -2.258 0.546 4.802 -0.150
m-Br -7.279 -2.273 -0.225 4.776 0.124

TABLE 2: HOMO and LUMO Energies, Net Charges on
the Substituents, Electronic Chemical Potentials and Field
Effect for Phenylacetic Acids

substituent EHOMO (eV) ELUMO (eV) charge (e) µ (eV) field (eV)

p-NO2 -7.946 -2.790 -0.118 5.368 0.071
p-NH2 -5.826 -0.673 0.236 3.249 -0.030
p-CH3 -6.712 -0.870 -0.165 3.791 0.084
p-F -7.015 -1.057 -0.143 4.036 0.080
p-Cl -6.897 -1.159 0.522 4.028 -0.109
p-Br -6.868 -1.203 -0.247 4.035 0.102
H -7.016 -0.825 0.130 3.921 0.000
m-NO2 -7.837 -2.757 -0.108 5.297 0.083
m-NH2 -5.906 -0.844 0.239 3.375 -0.038
m-CH3 -6.829 -0.905 -0.136 3.867 0.093
m-F -7.142 -1.154 -0.136 4.148 0.095
m-Cl -6.993 -1.172 0.543 4.082 -0.141
m-Br -6.943 -1.190 -0.240 4.066 0.123

TABLE 3: HOMO and LUMO Energies, Net Charges on
the Substituents, Electronic Chemical Potentials, and Field
Effect for Phenylpropenoic Acids

substituent EHOMO (eV) ELUMO (eV) charge (e) µ (eV) field (eV)

p-NO2 -7.646 -3.492 -0.158 5.569 0.061
p-NH2 -6.044 -2.064 0.250 4.054 -0.028
p-CH3 -6.722 -2.337 -0.044 4.529 0.036
p-F -7.011 -2.536 -0.140 4.773 0.058
p-Cl -6.938 -2.586 0.600 4.762 0.099
p-Br -6.937 -2.619 -0.230 4.778 0.073
H -6.868 -2.286 0.122 4.577 0.000
m-NO2 -7.539 -3.166 -0.129 5.353 0.065
m-NH2 -6.047 -2.287 0.210 4.167 -0.023
m-CH3 -6.884 -2.409 -0.207 4.646 -0.022
m-F -7.196 -2.671 -0.132 4.933 0.066
m-Cl -7.141 -2.667 0.629 4.904 0.371
m-Br -7.131 -2.677 -0.206 4.904 0.081

TABLE 4: HOMO and LUMO Energies, Net Charges on
the Substituents, Electronic Chemical Potentials, and Field
Effect for Phenylpropanoic Acids

substituent EHOMO (eV) ELUMO (eV) charge (e) µ (eV) field (eV)

p-NO2 -7.877 -2.952 -0.149 5.414 0.062
p-NH2 -5.705 -0.668 0.223 3.186 -0.025
p-CH3 -6.703 -0.720 -0.212 3.711 0.077
p-F -7.005 -1.036 -0.149 4.020 0.063
p-Cl -6.888 -1.025 0.544 3.956 -0.092
p-Br -6.866 -1.149 -0.238 4.007 0.079
H -6.838 -0.512 0.126 3.675 0.000
m-NO2 -7.764 -2.917 -0.156 5.340 0.094
m-NH2 -5.756 -0.737 0.242 3.246 -0.039
m-CH3 -6.671 -0.764 0.017 3.717 0.036
m-F -6.978 -0.934 -0.137 3.956 0.088
m-Cl -6.848 -0.943 0.571 3.895 -0.150
m-Br -6.811 -0.955 -0.223 3.883 0.117

TABLE 5: HOMO and LUMO Energies, Net Charges on
the Substituents, Electronic Chemical Potentials, and Field
Effect for Phenols

substituent EHOMO (eV) ELUMO (eV) charge (e) µ (eV) field (eV)

p-NO2 -7.362 -2.569 -0.153 4.965 0.092
p-NH2 -5.150 -0.402 0.158 2.776 -0.009
p-CH3 -6.102 -0.568 -0.205 3.335 0.108
p-F -6.414 -0.914 -0.156 3.664 0.094
p-Cl -6.367 -0.935 0.391 3.651 -0.082
p-Br -6.383 -0.952 -0.249 3.667 0.115
H -6.353 -0.478 0.128 3.415 0.000
m-NO2 -7.225 -2.769 -0.140 5.069 0.101
m-NH2 -5.599 -0.151 0.184 2.875 -0.021
m-CH3 -6.306 -0.530 -0.149 3.418 0.105
m-F -6.688 -0.775 -0.145 3.731 0.106
m-Cl -6.655 -0.899 0.465 3.777 -0.123
m-Br -6.491 -0.897 -0.189 3.694 0.115

TABLE 6: Theoretical Ratios (from eq 15)

Substrates

substituent
benzoic

A.
Ph-acetic

A. phenol
Ph-propenoic

A.
Ph-propanoic

A.

p-NO2 -0.136 -0.134 -0.137 -0.131 -0.128
p-NH2 -0.095 -0.091 -0.096 -0.094 -0.094
p-CH3 -0.106 -0.099 -0.104 -0.105 -0.105
p-F -0.111 -0.108 -0.115 -0.110 -0.110
p-Cl -0.111 -0.099 -0.101 -0.101 -0.101
p-Br -0.085 -0.076 -0.087 -0.085 -0.086
H -0.120 -0.121 -0.126 -0.121 -0.121
m-NO2 -0.132 -0.128 -0.132 -0.128 -0.128
m-NH2 -0.100 -0.095 -0.099 -0.097 -0.097
m-CH3 -0.126 -0.097 -0.117 -0.108 -0.108
m-F -0.115 -0.109 -0.118 -0.114 -0.114
m-Cl -0.110 -0.099 -0.110 -0.105 -0.105
m-Br -0.088 -0.077 -0.088 -0.088 -0.088
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the reaction center. In agreement with experimental observation,
the magnitude ofF′ is greater for the substrates that are more
susceptible to polar effects. It has been observed experimentally
that some reaction series (e.g., acid dissociation of phenols) show
marked deviations from the Hammett equation due to “cross-
conjugation” and require a different set of parameters (e.g.,σ
+, σ- ). In our theoretical approach, the phenol series has the
lowest value ofF′, suggesting a marked difference from the
rest of the substrates. Of course, the numerical value ofF′ is
also affected for theσ′ value overestimation for halogen
substituents.

Although the present treatment is incomplete, our procedure
appears to account for the most important factors affecting
substrates. The correspondence exhibited amongσ′ andσ values
suggests that these parameters are affected by the intramolecular
interaction between substituent and substrate and are almost
insensitive to environmental effects. A comparison of theF and
F′ values is less clear, because is impossible to ignore the actual
impact of effects such as temperature or solvation.

It would be naı¨ve to attribute more significance to this relation
between the theoretical parameters and experimental ones. What
is actually possible is to improve the theoretical method from
an effective partition of the density in eq 6 and solve the integral
term in eq 12 in order to get better numerical results. Effects

coming from the environment, ignored in the present formula-
tion, such as solvent or temperature could be incorporated into
a more general approach to this problem within finite temper-
ature DFT formalism. We insist that our approximation is an
attempt to describe substituent effects with a pure theoretical
basis and is only from this point of view without any particular
relation to the vast experimental results in this area.

IV. Conclusion

This work is an attempt to look for a new route to obtain
parameters characterizing substituent effects using theoretical
calculations. It has been shown that first principles of DFT are
fairly appropriate for recovery of the most important features
of the linear free-energy relationships that are described in
physical organic chemistry literature.

Preliminary DFT equations have been developed for inter-
pretation of the substituent effects from a purely theoretical point
of view. In particular, we found an equation that resembles the
fact that the change of net charge on the substrate and the field
effect on it as a consequence of attaching a substituent are the
fundamental contributions to a theoretical analogue of theσ
parameter of Hammett.

These theoreticalσ′ values were calculated for different ring-
substituted benzene derivates, and it was possible to establish
linear relationships among them resembling the linear relation-
ships of the Hammett analysis. At the same time, the slopes of
these plots were proportional to the susceptibility of the substrate
to the polar effects of the substituents, that is, the experimental
F parameter. Effects such as entropy changes, temperature
dependence, solvent effect, and so on, can be very relevant to
the values of theF parameters and have been ignored in the
present formulation.

We hope this point of view offers a new tool for development
of a new correlation analysis for organic chemistry using ab
initio calculations. Also, it opens a new direction to explore
more about the origin and pursuit of the linear free-energy
relationships. The substituent effects are a complex problem,
and the use of DFT would be useful to contrast with the
experimental behavior in order to investigate the relative
importance of the different effects contributing to reactivity,
the deviations of the linear behavior, the diversity of parameters,
and so on.
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TABLE 7: Experimental σ Values (from ref 1) and σ′ Values Calculated from Eqs 16 and 18

substituent σ
σ′ benzoic

acid
σ′ Ph-acetic

acid
σ′ Ph-propenoic

acid
σ′ Ph-propanoic

acid σ′ phenol

p-NO2 0.78 1.136 1.043 1.342 1.073 1.051
p-NH2 -0.66 -0.485 -0.446 -0.613 -0.381 -0.112
p-CH3 -0.17 1.216 1.241 0.795 1.119 1.246
p-F 0.06 1.596 1.150 1.257 1.074 1.065
p-Cl 0.23 -2.165 -1.646 -2.089 -1.629 -0.981
p-Br 0.23 1.777 1.580 1.684 1.417 1.404
m-NO2 0.71 1.128 1.016 1.213 1.131 1.017
m-NH2 -0.16 -0.349 -0.466 -0.425 -0.466 -0.212
m-CH3 -0.07 1.033 1.136 0.411 0.437 1.051
m-F 0.34 1.350 1.138 1.229 1.055 1.038
m-Cl 0.34 -2.071 -1.761 -1.949 -1.786 -1.274
m-Br 0.39 1.7641 1.574 1.583 1.400 1.198

Figure 1. σ′ plot for acid dissociation of phenylpropenoic acids:
phenylpropenoic acidsσ′ values vs benzoic acidsσ′ values.

TABLE 8: Theoretical G′ Values and ExperimentalG Values
(from ref 1)

substrate F′ (theoretical) F (experimental)

benzoic a. 1.00 1.00
Ph-acetic a. 0.85 0.49
Ph-propenoic a. 0.90 0.47
Ph-propanoic a. 0.80 0.27
phenol 0.65 2.11
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